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Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and
climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture condi-
tions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at
both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can de-
liver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have beendeveloped
to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and tem-
poral details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending
daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion
Model (STARFM)was improved andmodified for predicting thermal radiance and LST data by considering annu-
al temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture
analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radi-
ance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation
procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temper-
ature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to
October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study
area ranged from1.3 K to 2 K. Like existing spatio-temporal data fusionmodels, the SADFATmethod has a limitation
in predicting LST changes that were not recorded in theMODIS and/or Landsat pixels due to themodel assumption.

© 2014 Elsevier Inc. All rights resereved.
1. Introduction

Land surface temperature (LST), as frequently referred to as the skin
temperature of the Earth's surface and as derived from remotely sensed
thermal infrared (TIR) data, is a key parameter in analyzing and model-
ing the surface energy balance (Anderson et al., 2011; Trenberth, 1992),
surface moisture and evapotranspiration (Carlson, 2007; Gillies,
Carlson, Cui, Kustas, & Humes, 1997; Moran, 2004), and climate change
of various spatial scales (Jin, Dickinson, & Zhang, 2005; Weng, 2009).
LST and its spatial–temporal variations have long been foci of studies
on surface Urban Heat Island (UHI) (Imhoff, Zhang, Wolfe, & Bounoua,
2010; Oke, 1982; Rajasekar & Weng, 2009; Streutker, 2003). Oke
(1979) discriminated between the canopy layer UHI and the boundary
layer UHI. The canopy layer UHI consists of air between the roughness
elements, e.g., buildings and tree canopies, with an upper boundary
just below roof level. Therefore, it relates closely to satellite-derived
nmental Change, Department of
ty, Terre Haute, IN 47809, USA.
LST, although a precise transfer function between LST and the near
ground air temperature is not yet available (Nichol, 1994). In addition,
LST is useful for the examination of heat-related health issues and the
vulnerability of human beings to heat stress (Harlan, Brazel, Prashad,
Stefanov, & Larsen, 2006; Lafortezza, Carrus, Sanesi, & Davies, 2009),
and the outbreak and propagation of vector-borne diseases (Liu &
Weng, 2009; Reisen et al., 2004; Ruiz et al., 2010). Therefore, estimation
of LST and assessing its variations are not only helpful to understand en-
vironmental and ecological processes, but also concernedwith thewell-
being of humans.

Current satellite TIR data suitable for studying urban thermal envi-
ronment or for solving urban environmental and health problems that
are characterized by a high spatial variability – such as Landsat TM,
ETM+, and ASTER – have a much coarser temporal resolution than it
is needed. Given the long repeat cycle of these satellites, their TIR data
are not suited for UHI monitoring. Surface UHI is not only a phenome-
non of high spatial variability, but also of high temporal variability. For
examining the health implications of UHI, such as heat-related epidemi-
ological studies, routine LST estimation is essential (Liu &Weng, 2012).
Similarly, to assess the UHI impact on energy usage, LST measurements
must match with simulated data of hourly energy consumption from
urban buildings (Zhou, Weng, Gurney, Shuai, & Hu, 2012). Thus, while
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some of the current satellite-borne TIR sensors can provide LST mea-
surements at a reasonably high spatial resolution; their utilization in
urban climate studies is restricted because of low temporal resolution
and limited available nighttime image data (Stathopoulou & Cartalis,
2009). No single satellite system currently provides TIR data of global
coverage that combines both high spatial and temporal resolutions.
For a list of major current satellite TIR imaging systems, please refer to
Tomlinson, Chapman, Thornes, and Baker (2011). Due to technical con-
straints, these sensing systems reflect a tradeoff between temporal and
spatial resolution such that the systems with high-spatial resolution
possess low-temporal resolution, or vice versa.

It is, therefore, highly desirable to develop techniques to derive LST
data of high spatial and temporal resolutions from available remotely
sensed data. Existing techniques have been named differently, including
image merging, image/data fusion, spatial sharpening, downscaling,
and disaggregation, but basically fall into two categories.While the spa-
tial thermal sharpening techniques aim at downscaling (disaggregat-
ing) radiometric surface temperature of a sensor to higher resolutions
typically associated with its shorter wavebands (visible and near-
infrared) (Dominguez, Kleissl, Luvall, & Rickman, 2011; Kustas,
Norman, Anderson, & French, 2003; Liu & Moore, 1998; Pu, Gong,
Michishita, & Sasagawa, 2006), the temporal thermal sharpening tech-
niques are developed to downscale TIR data from a coarser spatial-
resolution but higher temporal-resolution sensor (typically associate
with geostationary satellites) to generate highly temporally resolved
LST diurnal cycles (Bechtel, Zakšek, & Hoshyaripour, 2012; Gottsche &
Olesen, 2001; Inamdar & French, 2009; Inamdar, French, Hook,
Vaughan, & Luckett, 2008; Zakšek & Oštir, 2012). The former can pro-
duce TIR data on the order of 101 to 102 m in spatial resolution but is
limited by temporal resolution. The latter, on the other hand, can gener-
ate TIR data of up to every 15 min in temporal resolution, but usually
have very coarse spatial resolution (e.g., 1000 × 1000 m). The inability
of existing techniques in producing proper spatial and temporal sam-
pling of LST data for urban climate and environmental studies calls for
development of new techniques in TIR data fusion.

Downscaling is the scaling process of converting remote sensing
data from a low to a high spatial resolution. Thermal downscaling is
also named thermal sharpening or disaggregating. Thermal downscaling
typically requires preserving the radiometry of original TIR radiance or
LST data for subsequent data analysis (Stathopoulou & Cartalis, 2009).
Therefore, it is important to understand the complexity and heteroge-
neity of thermal landscapes and key factors causing the spatial variabil-
ity in LST. Optical and TIR data can provide complementary information
about the Earth's surface, but due to instrumental reasons, TIR images
are usually collected at coarser spatial resolution than do visible and
near-infrared (NIR) bands on the same satellite platform. Various
methods of thermal downscaling can be broadly grouped into physical
and statistical approaches. Statistical downscaling techniques have
been largely developed to disaggregate radiometric surface tempera-
ture of a sensor to higher resolutions associated with its shorter
wavebands. Physical downscaling uses modulation methods, which
take a thermal pixel as a block and distributes its thermal radiance
into finer pixels corresponding to its shorter wavebands. Liu and
Moore (1998) proposed the Pixel Block Intensity Modulation (PBIM)
method, which were quantified by Landsat TM reflective bands, to ad-
just temperatures within the lower resolution pixel blocks of the TIR
band based on topographic variations. Nichol (2009) suggested that
the method by Liu and Moore is only suited for use within simple
land-cover types where temperature variations are caused mainly by
topography, but is not suitable for use in the urban areas where topog-
raphy is mostly flat. Nichol (2009) proposed an alternative modulation
method based on emissivity. Stathopoulou and Cartalis (2009) applied
the PBIM method to downscale AVHRR LST image data to that of TM
band 6 by employing different scaling factors (effective emissivity,
season-coincident Landsat LST data, or their combination). It is found
that the spatial pattern of the downscaled AVHRR LST resembled
reasonably well with time-coincident TM LST and the root mean square
error (RMSE) yielded a range of 4.9 to 5.3 °C. It isworthy to note that Liu
and Pu (2008) compared the modulation method with spectral
unmixing of TIR radiance. The former disaggregated TIR radiance by
using higher spatial resolution land cover data as the distribution factor,
while the latter employed spectral mixture analysis (SMA) to decom-
pose mixed TIR pixels into multiple isothermal components. However,
the spatial details within mixed pixels remained unresolved in the
decomposed component temperatures (Gillespie, 1992). Moreover,
the isothermal assumption that underpins variousmodulationmethods
for retrieving component temperature or emissivity may not be valid.
This is especially true within urban landscapes where component sur-
faces are often seen smaller than the IFOV of satellite sensors, resulting
in a mixture of different temperature components.

While these thermal downscaling methods provide useful means to
improve the resolution of TIR data of a sensor or LST to higher spatial
resolutions, they do not enhance the temporal resolution of the sensor
simultaneously. Gao, Masek, Schwaller, and Hall (2006) developed a
data fusion technique that allows improving spatial resolution and tem-
poral coverage at the same time. The techniquewas named “Spatial and
Temporal Adaptive Reflectance Fusion Model”, or for short, STARFM,
that blends Landsat and MODIS data to generate synthetic Landsat-
like daily surface reflectance. The basic assumption is that surface reflec-
tance at a predicted date may be estimated by a weighted sum of the
spectrally similar neighborhood information from both Landsat and
MODIS reflectance at observed dates (close to the predicted date). Es-
sentially, STARFM integrates daily information from MODIS with peri-
odic Landsat data to interpolate surface reflectance at the Landsat
resolution of 30 m on a daily basis. This data fusion approach has re-
ceived a lot of attention lately, because it can provide successful moni-
toring of seasonal changes in vegetation cover (Gao et al., 2006; Hilker
et al., 2009) and larger changes in land use (Hansen et al., 2008;
Potapov, Hansen, Stehman, Loveland, & Pittman, 2008). The STARFM
approach was later adjusted and revised for specific applications
under different conditions. Hilker et al. (2009) developed Spatial Tem-
poral Adaptive Algorithm for mapping Reflectance Change (STAARCH)
model based on the STARFM approach for mapping disturbance events
between two input dates. The forest changes are mapped using the
dense time-series of MODIS imagery. Moreover, the STAARCH allows
selecting an optimal MODIS–Landsat image pair from one of two inputs
for making a prediction (Hilker, Wulder, Coops, Linke, et al., 2009). Zhu,
Chen, Gao, Chen, and Masek (2010) developed an enhanced STARFM
(ESTARFM) approach for application in a heterogeneous area by intro-
ducing a conversion coefficient to the fusion model, which represented
the ratio of change between the MODIS pixels and ETM+ end-
members. The ESTARFM approach provides a solution for the heteroge-
neous (mixed) pixels, but it still cannot accurately predict short-term,
transient changes not recorded in any of the bracketing (observed)
fine-resolution images (Zhu et al., 2010).

Although STARFMwas originally designed to fuse shortwave reflec-
tancefields fromMODIS and Landsat to create daily reflectance and veg-
etation index maps, it appears to hold great utility for high-resolution
thermal mapping too (Anderson et al., 2011; Liu & Weng, 2012).
Anderson et al. (2010) used STARFM to predict evapotranspiration at
30-m resolution and compared itwithfluxestimationderived from spa-
tially disaggregated ALEXI (Atmosphere–Land Exchange Inverse)
model. They found that the prediction yielded errors on the order of
10%. Liu and Weng (2012) applied the STARFM model to simulate
ASTER-like land surface reflectance and LST images for Los Angeles for
five dates in the five epidemiological weeks in summer 2007, and
used the simulated data to assess the environmental conditions of the
WNV (West Nile Virus) outbreak. The mean absolute difference be-
tween the observed and the simulated surface reflectance was found
less than 0.2 and the LST residual less than 1 °C for all images. However,
the application of the STARFM and its variants for LST prediction is im-
mature in terms of methodology. Many critical issues have not been
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solved, especially in terms of thermal landscape heterogeneity, land
cover change, and vegetation phenology. Moreover, LST of a landscape
patch may be affected by the surrounding materials seriously (Oke,
1982). In this research, we intend to develop a new fusion algorithm
for TIR data to predict daily LST at 120-m resolution by blending Landsat
TM and MODIS LST data, i.e., SADFAT. Following a brief introduction of
the study area, Sections 3 and 4 will discuss about the theoretical basis
of the proposed data fusion model and the implementation issues of
the algorithm. The results will be presented in Section 5, followed by
Discussion and conclusions.

2. Study area and data

The study area covers the majority of the Los Angeles County,
California, USA, a small portion of Simi Valley in Ventura County and a
small part of Orange County (Fig. 1). This area consists of various land
covers, including water, developed urban, barren land, forest, shrub
land, herbaceous, planted/cultivated, and wetlands as identified by the
2006 NLCD database. The primary mountain ranges are Santa Monica
Mountains and the San Gabriel Mountains in the southwestern and
southeastern part of Los Angeles County, respectively. The valleys are
largely the population centers, and compose a large percentage of the
urban areas. The area possesses a Subtropical–Mediterranean climate
with a dry summers and moist winters. The average high air tempera-
ture is 29 °C in August and 20 °C in January based on the weather re-
cords from the Downtown-University of Southern California campus.
According to a study by the urban heat island group, the urbanization
of city has negatively affected the urban community, such as the in-
creased energy use, impaired air quality, and the aggravation of heat-
related and respiratory illness (http://heatisland.lbl.gov/coolscience/
Fig. 1. The study area Los Angeles County, California, USA. The backgro
cool-science-urban-heat-island). Thus, the generation of daily LST data
will be conducive to monitoring the dynamic patterns of LST and to in-
vestigating the UHI effect on energy use and environmental and public
health.

Landsat TM images of Path 41, Row 36 acquired on 24th June, 10th
July, 27th August, 28th September, 14th October, 30th October, and
15th November, 2005 were used as reference data to estimate daily
LST images at 120 m resolution (Table 1). The corresponding daily
MODIS LST (MOD11A1) and reflectance data (MOD09GA) were obtain-
ed through the Level 1 and Atmosphere Archive and Distribution Sys-
tem website data portal available at http://ladsweb.nascom.nasa.gov/
data/search.html. These MODIS LST products were selected and used
as another set of references for the daily LSTmapping. Before the imple-
mentation of the fusion method, both the Landsat TM and MODIS data
were registered to the same coordinate system and resampled to the
same spatial resolution (120 m). A shared cloud mask was created for
both Landsat and MODIS images to remove cloudy pixels from the
computation.

3. Methodology

3.1. Theoretical basis of the TIR data fusion model

The STARFM algorithm was initially designed to predict surface re-
flectance and is based on the assumption that MODIS and Landsat sur-
face reflectance are highly consistent (Gao et al., 2006; Masek et al.,
2006). For homogeneous pixels, as long as this assumption holds true
for the thermal regime, the STARFM procedure can be applied to TIR
image data either at radiance or at LST level. Since our improvedmethod
must handle the heterogeneous characteristics of LSTs and radiance can
und image shows land cover types derived from the NLCD 2006.

http://heatisland.lbl.gov/coolscience/cool-science-urban-heat-island)
http://heatisland.lbl.gov/coolscience/cool-science-urban-heat-island)
http://ladsweb.nascom.nasa.gov/data/search.html)
http://ladsweb.nascom.nasa.gov/data/search.html)
image of Fig.�1


Table 1
Characteristics of Landsat and MODIS LST data used in the study.

Date Landsat overpass
time (H:M)

MODIS overpass
time (H:M)

Landsat
Min

Landsat
Median

Landsat
Max

MODIS
Min

MODIS
Median

MODIS
Max

Correlation

06/24/2005 10:15 10:06 259.51 313.60 333.75 250.72 310.54 319.24 0.83
07/10/2005 10:16 10:06 283.38 309.27 331.37 250.00 306.46 317.80 0.67
08/27/2005 10:16 10:06 278.19 318.53 341.76 250.02 315.04 322.02 0.77
09/28/2005 10:16 10:06 263.60 310.56 329.32 252.66 307.48 314.44 0.79
10/14/2005 10:16 10:06 268.78 310.79 334.94 254.20 308.46 319.38 0.63
10/30/2005 10:16 10:06 257.50 299.33 320.01 250.02 297.62 306.48 0.66
11/15/2005 10:16 10:06 261.07 299.12 319.16 250.16 298.00 304.82 0.75

Note: The over-passing time recorded is the local time in the format of hour and minute, and the unit for the minimum, median, and maximum LST values is Kelvin (K).
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be spatially aggregated using linear form, this research focuses on data
fusion at the radiance level. For homogenous pixels, remotely sensed
TIR data from different sensors at a close acquisition time should be
comparable and correlated after radiometric calibration, geometric rec-
tification, and atmospheric correction. Nevertheless, such factors as
acquisition time, bandwidth, orbit parameters, geo-location errors, ef-
fective pixel coverage, and spectral response function can introduce
some system biases into the subsequent analysis. Assuming that
MODIS radiance images have been resampled to the same spatial reso-
lution of Landsat radiance images, the following discussion focuses on
how to derive daily radiance images at 120-m resolution. For the conve-
nience, the MODIS pixel will be described as M pixel, and the Landsat
pixel will be simply described as L pixel.

For a homogeneousM pixel covered only by one land cover type, the
radiance difference between the resampled M pixel and the L pixel re-
sults from the system biases and should be stable in a short period.
Thus, the relationship between the observations of radiance from the
two sensors for the homogeneous pixels can be expressed as:

RL x; y; tð Þ ¼ a � RM x; y; tð Þ þ b ð1Þ

where R defines the radiance, (x, y) represents a given location, t is the
acquisition date, and a, b are the coefficients for relative adjustment
needed for the Landsat and MODIS radiance pixels. Therefore, suppose
there is onepair of Landsat andMODIS image acquired at t0, and another
MODIS image acquired at tp, and the land cover and sensor calibration
does not change during the period between t0 and tp, then Eq. (1) can
have two instances:

RL x; y; t0ð Þ ¼ a � RM x; y; t0ð Þ þ b ð2Þ

RL x; y; tp
� �

¼ a � RM x; y; tp
� �

þ b: ð3Þ

There is a possibility that the relationship between MODIS and
Landsat LST may vary from day to day depends on weather and surface
moisture conditions. Table 1 shows that the relationship remained sta-
ble as indicated by correlation coefficient (Masek et al., 2006). Thus, the
inference of Eqs. (2) and (3) is reasonable.

From Eqs. (2) and (3), the following expression can be derived:

RL x; y; tp
� �

¼ RL x; y; t0ð Þ þ a � RM x; y; tp
� �

−RM x; y; t0ð Þ
h i

: ð4Þ

Eq. (4) states that for a homogenous pixel at tp, its L radiance equals
to the sum of L radiance at t0 and the scaled difference ofM radiance be-
tween t0 and tp. The coefficient a can be calculated from the system
biases given the stability of the two sensors. If two pairs of L image
and M image can be obtained, the coefficients can also be determined
by the regression of the L radiance withM radiance at t1 and t2. Howev-
er, it should be noted that Eq. (4) is only valid for the non-changing sur-
faces if the relationship betweenMODIS and Landsat LST remains stable.
However, a large proportion of the pixels frommedium- and coarse-
resolution imagery contain more than one land cover type, i.e., they are
mixed pixels. According to linear spectral mixture analysis (LSMA) the-
ory, the radiance of a mixed pixel can be defined as:

R ¼
XN
i¼1

f iRi þ ε ð5Þ

where R represents the radiance received by the satellite sensor, N is
the number of end-member, fi denotes the fraction of each land cover
component, and ε is the residual. Suppose that each L pixel can be
regarded as one end-member of a M pixel, then the radiance of the M
pixel at t1 and t2 can be described as Eqs. (6) and (7), according to
Eqs. (1) and (5):

RM t1ð Þ ¼
XN
i¼1

f i
1
a
RL t1ð Þ− b

a

� �
ð6Þ

RM t2ð Þ ¼
XN
i¼1

f i
1
a
RL t2ð Þ− b

a

� �
: ð7Þ

It should be noted that in Eqs. (6) and (7), the coefficients a and b re-
main stable and the fraction of each L pixel end-member does not vary,
either. Therefore, the radiance change of anM pixel from t1 to t2 can be
computed as:

RM t2ð Þ−RM t1ð Þ ¼ 1
a

XN
i¼1

f i RiL t2ð Þ−RiL t1ð Þð Þ: ð8Þ

The temporal variability of LST shows a strong diurnality (Sabins,
1997) and seasonality (Weng, Liu, Liang, & Lu, 2008). The LST seasonal
change can be modeled using the annual temperature cycle (ATC) ap-
proximated by a sinusoidal function (Bechtel, 2012):

LST ¼ MAST þ YAST � sin w � dþ θð Þ ð9Þ

whereMAST is the mean annual surface temperature, YAST is the yearly
amplitude surface temperature, w is the angular frequency, d is the day
of year (DOY) relative to the equinox and θ is the phase shift. Since spec-
tral radiance is related to LST by the Plank's law, the radiance change of
an L pixel from time t1 to t2 can be quantified as:

RiL t2ð Þ−RiL t1ð Þ ¼ 2c cos θi þw
d1 þ d2

2

� �
sin w

d2−d1
2

¼ C cos θi þwd
� �

ð10Þ

where θ is the phase shift, or heat lag, c is the amplitude of the radiance
variation, C is the constant, and d is themean acquisition date, d1 and d2
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are the parameters input to the algorithm. Incorporating the ATCmodel,
Eq. (8) can be re-written as:

RM t2ð Þ−RM t1ð Þ ¼
2c sinw

d2−d1
2

� �
a

XN
i¼1

f i cos θi þwd
� �

¼C
a

XN
i¼1

f i cos θi þwd
� �

:

ð11Þ

If the radiances of the kth L pixel at date t1 and t2 are known, Eq. (9)
has an instance as:

RkL t2ð Þ−RkL t1ð Þ ¼ 2c cos θk þwd
� �

sin w
d2−d1

2
: ð12Þ

By combining Eq. (11) with Eq. (12), Eq. (13) can be obtained:

RkL t2ð Þ−RkL t1ð Þ
RM t2ð Þ−RM t1ð Þ ¼

cos θk þwd
� �

1
a

XN
i¼1

f i cos θi þwd
� � ¼ hk: ð13Þ

Since θ reflects the phase shift of a pixel and is associated with the
thermal properties of land surface materials, it can be regarded as con-
stant as long as the land cover does not change in the observational pe-
riod. Therefore, the ratio of the radiance change of kth L pixel to that of
the corresponding M pixel is constant for a certain L pixel. Here, hk is
called the conversion coefficient for the purpose of consistency (Zhu
et al., 2010).

Based on Eq. (13), if one pair of L andM radiance image at t0 and an-
otherM radiance image at tp are available, the L radiance image at tp can
be predicted using the following formula:

RL x; y; tp
� �

¼ RL x; y; t0ð Þ þ h x; yð Þ � RM x; y; tp
� �

−RM x; y; t0ð Þ
h i

: ð14Þ

Apparently, Eqs. (4) and (13) only utilize information from a single
pixel to infer the L radiance. By introducing additional information
from neighboring spectrally similar pixels, the solution to Eq. (14) can
be determined uniquely, and a moving window (Gao et al., 2006) can
be employed to compute the radiance of the central pixel. Therefore, as-
sumingw is themovingwindow size, the predicted L pixel radiance can
be computed as:

RL xw=2; yw=2; tp
� �

¼ RL xw=2; yw=2; t0
� �

þ
XN
i−1

Wi � hi � RM xi; yi; tp
� �

−RM xi; yi; t0ð Þ
h i

ð15Þ

whereWi is theweight of a neighboring similar pixel, and N is the num-
ber of the spectrally similar pixel. The computed radiance can then be
converted to LST using the Planck's law. It deserves to note that the
use of ATC parameters ignores the influence of synoptic and surface
conditions on the variations of the thermal radiance; however, since
Eq. (10) has coped with the change of radiance, it is reasonable to as-
sume the stability of the synoptic and surface conditions.

Fig. 2 illustrates the procedure of SADFAT, which contains five steps.
The inputs for the algorithm are two pairs of L andM images at t1 and t2,
respectively and oneM image at the prediction date tp. At the first step,
all the images should be registered to the same coordinate system and
atmospherically calibrated and corrected to the surface radiance. Sec-
ondly, the two L images are used to search for the spectrally similar
pixels according to the predefined principles. The third step is to com-
pute the combined weight for each similar pixel. At the fourth step,
the conversion coefficients are determined by the regression analysis.
Finally, the M images at tp and the calculated conversion coefficients
are employed to obtain the predicted L radiance image. The computed
radiance image will then be converted to LST using the Planck's law.
The predicted LST images are validated against the real TM image data
using the coefficient of correlation, mean difference, andmean absolute
difference values.

3.2. LST retrieval for Landsat TM imagery

The accuracy of LST computation for Landsat TM image is crucial in
implementing the proposed algorithm. Sobrino, Jimenez-Munoz, and
Paolini (2004) investigated and compared three methods to derive
LST over an agricultural area in Spain with land surface emissivity esti-
mated from the visible and near infrared bands. The retrieved results
disclosed that the error of the single channel method developed by
Jimenez-Munoz and Sobrino (2003) in retrieving LST is below 1 K.
Therefore, the generalized single channel method was utilized for LST
estimation in this study.

The main characteristic of the generalized single channel method is
that in situ radio-soundings or effectivemean atmospheric temperature
values are not required compared to other single channel methods.
More importantly, specific atmospheric functions for Landsat TM
6 were obtained using the TIGR database and simulations from
MODTRAN 3.5. The following equations show how to implement the
single channel method for TM TIR data.

Ts ¼ γ ε−1 ψ1Lsensor þ ψ2ð Þ þ ψ3

h i
þ δ ð16Þ

with

γ ¼ c2
T2
sensor

λ4

c1
Lsensor þ λ−1

" # !−1

ð17aÞ

δ ¼ −γLsensor þ Tsensor ð17bÞ

where Lsensor is the at-satellite radiance, Tsensor is the at sensor brightness
temperature, λ is the effective wavelength for TM sensor (11.475 μm),
c1, c2 are the constants. The atmospheric functions are defined based
on the water vapor content:

ψ1
ψ2
ψ3

2
4

3
5 ¼

0:14714 −0:15583 1:1234
−1:1836 −0:37607 −0:52894
−0:04554 1:8719 −0:39071

2
4

3
5 ω2

ω
1

2
4

3
5 ð18Þ

whereω is thewater vapor content,which can be obtained from the sat-
ellite images or in situ device (Jimenez-Munoz & Sobrino, 2003). Since
MODIS can provide data of water vapor content, this research adopted
the ratio method using the atmospheric water channels (Kaufman &
Gao, 1992) to provide the input for the atmospheric function.

Another parameter assumed to be known in the single channel
method is land surface emissivity (LSE). According to Sobrino and
Raissouni (2000), it is possible to acquire LSE data from NDVI values
for the areas comprised of soil, vegetation and mixed soil/vegetation
components. The problem of the NDVI threshold method, as pointed
out by Sobrino et al. (2008), is the lack of continuity emissivity values
at soil and vegetation thresholds. Therefore, a simplified version of the
NDVI threshold method was employed in this study for the derivation
of LSE data. The values of NDVI for soil and vegetation were obtained
from the NDVI histogram of each image. However, the NDVI threshold
method is not suitable to derive emissivity values for the urban areas.
Therefore, the emissivity data product from theASTERGlobal Emissivity
Database 3.0 (Hulley & Hook, 2009; Hulley, Hook, & Baldridge, 2008)
was utilized for the urban areas identified by the National Land Cover
Database 2006. The mean emissivity value of Bands 13 and 14 was se-
lected for use to match the spectral range of TM Band 6. The original
emissivity product was delivered in 1° by 1° tiles with geographic pro-
jection (WGS84) at 100 m spatial resolution. It was later mosaicked
and resampled to 120 m using UTM projection system to match the
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Fig. 2. The SADFAT procedure for predicting the daily LST image and the validation. Landsat images at t1 and t2 are first pre-processed and used for selection of similar pixels. The selected
similar pixels are then combined with MODIS images at t1 and t2 to compute weight and conversion coefficient. The prediction can be made based on the MODIS images at a prediction
date (tp).
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Landsat LST data. It should also be noted that the study area contains
open water and inland lakes, which are not suitable for the direct use
of the threshold method either. As a result, water areas were first ex-
tracted based on their spectral characteristics because water bodies
have a low value for the infrared reflectance and NDVI (Jensen, 2005).
The effective emissivity value was calculated for water bodies by using
the ASTER spectral library 2.0 and the TM spectral response filter. The
Kirchhoff's lawwas applied to convert hemispherical reflectance to sur-
face emissivity (Nicodemus, 1965).

4. Model implementation

The implementation of SADFAT requires pre-processing of Landsat
and MODIS data, selection of spectrally similar pixels, and computation
of the conversion coefficient. The calculation of weights for spectrally
similar pixels involves weighing the contribution of the neighboring
pixels to the computation of a central pixel. The conversion coefficient
reflects the combined changes of LST for Landsat and MODIS from one
date to another. Using a local moving window, neighboring spectrally
similar pixels were included for the computation of the LST for a central
pixel with the temporalweights of the two dates. Below are the detailed
descriptions for the implementation of SADFAT.

4.1. Data preprocessing and selection of spectrally similar pixels

Before the application of SADFAT, both MODIS and Landsat data
need to bepre-processed geometrically to the samepixel size and radio-
metrically to ensure the data accuracy. In this study, Landsat level 1 T
product was employed and atmospherically calibrated (Bands 1–5 and
7) using Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) (Masek et al., 2006). The LST retrieval for Landsat TM was
based on the single channel method described in Section 3.2. MODIS
daily LST and surface reflectance data were re-projected to the Landsat
coordinate system using the MODIS Reprojection Tools (MRT).

Similar pixels provide needed spectral and spatial information for
the LST computation of a central pixel within the local movingwindow.
In the original STARFM and the enhanced STARFM models (Gao et al.,
2006; Zhuet al., 2010), twomethodswere used to obtain spectrally sim-
ilar pixels. The unsupervised classification can be applied to Landsat im-
ages to identify the pixels belonging to the same cluster as the central
pixel. Another method is to define a threshold of difference between
the central pixel and the neighboring pixels, through which similar
pixels can be identified. Differences among the spectrally similar pixels
were computed based on the standard deviation of fine resolution im-
ages and the number of classes used (Gao et al., 2006). A larger number
of classesmean a stricter condition for selecting spectrally similar pixels.
Since this study utilized multiple bands, i.e., Landsat red, NIR, and TIR
bands, to search for similar pixels, it is reasonable to adopt the threshold
method. The threshold method can avoid global misclassifications
which would have an adverse impact on the calculation (Gao et al.,
2006). In searching for the similar pixels, both Landsat images were
used to provide the effective similar pixels. If only one Landsat image
was used for the identification of similar pixels, itmay result in inconsis-
tency with the actual surface conditions, e.g., land cover may change
from one date to another date. In addition, it is possible that a certain
pixel did not have any spectrally similar pixel. In such case, the weight
for the central pixel would be set to 1. It is also possible that all of the
similar pixels cannot provide better prediction than the central pixel.
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Therefore, additional filtering was applied to the selected candidates to
remove the poor quality pixels (Gao et al., 2006). First, according to
the QA layer in Landsat and MODIS data (surface reflectance and LST
product), poor quality data were removed. Second, neighboring similar
pixelswere filtered out if they cannot provide better reflective and ther-
mal information than the central pixel.

4.2. Computation of weight

Theweight defined the contribution of neighboring pixels to the cal-
culation of a central pixel. It was determined by the location of the sim-
ilar pixels and the reflective and thermal similarity between thefine and
coarse resolution data. Higher reflective and thermal similarity and
shorter distance between a central and a neighboring pixel yielded a
higher weight in the computation. This research computed the correla-
tion coefficient to determine the reflective and thermal similarity be-
tween Landsat and the corresponding MODIS pixels. The correlation
coefficient can be computed as:

Ri ¼
E Li−E Lið Þð Þ Mi−E Mið Þð Þ½ �ffiffiffiffiffiffiffiffiffiffiffi

D Lið Þp ffiffiffiffiffiffiffiffiffiffiffiffiffi
D Mið Þp ð19aÞ

with

Li ¼ Li x; y; t1;B1ð Þ;…; Li x; y; t1;Bnð Þ; Li x; y; t2;B1ð Þ;…; Li x; y; t2;Bnð Þ½ �
ð19bÞ

Mi ¼ Mi x; y; t1;B1ð Þ;…;Mi x; y; t1;Bnð Þ;Mi x; y; t2;B1ð Þ;…;Mi x; y; t2;Bnð Þ½ �
ð19cÞ

where Ri is the combined reflective and thermal correlation coefficient
between L and M images for the ith pixel. Li and Mi are the collection
of similar pixels from Band 3, Band 4 and Band 6 for Landsat and its cor-
responding bands forMODIS at t1 and t2. E andD are the value of expec-
tation and variance, respectively. The value of R ranged from −1 to 1,
and a higher Rmeant a higher reflective and thermal similarity. The rea-
sons to include both the reflective and thermal bands of different dates
were: (1) LST varied with land cover type (Weng, Lu, & Schubring,
2004). The inclusion of additional spectral bands ensured that the selec-
tion and computation only occurred for the same land cover. (2) Both
pairs of L and M images were contained in the vectors to provide a
more accurate calculation of similarity given that land cover may
change over the time.

The location of similar pixels also impacted their contributions to a
central pixel. The distance between the central pixel and the neighbor-
ing ith pixel can be calculated as:

di ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xw=2−xi
� �2 þ yw=2−yi

� �2
= w=2ð Þ

r
ð20Þ

where di is the computed distance and ranges from1 to 20.5, (xw / 2, yw / 2)
is the spatial position of the central pixel (xi, yi), is the position of the ith
neighboring similar pixel. With the location of the similar pixels and the
reflective and thermal similarity, a combined weight, CW, can be calcu-
lated as:

CW ¼ 1−Rið Þ � di: ð21Þ

A spectrally similar pixel with a larger CW value would have a less
weight in the calculation. Therefore, the combined weight needs to be
normalized based on the inverse:

Wi ¼ 1=CWið Þ=
XN
i¼1

1=CWi ð22Þ
Wi is the final combined weight for the ith similar pixel. The range ofW
ranged from 0 to 1, and the total value of each Wi would be 1. When
there were p similar pixels among all the similar pixels whose corre-
sponding coarse resolution pixels were pure (R = 1), the weight for
the similar p pixels would be set to 1 / p and other pixels to 0. That is
to say, only homogeneous pixels were used for the calculation of the
weight.

4.3. Conversion coefficient and computation of LST for the central pixel

The conversion coefficient defines the relationship between L andM
radiance changes (Zhu et al., 2010). Since neighboring similar pixels are
introduced, it is practical to compute the conversion coefficient using
the regression analysis within each local moving window. Regression
analysis is reasonable, because, based on the theoretical basis of
SADFAT, similar pixels within the same coarse resolution pixel have
the same conversion coefficient. Due to the additional spatial filter, it
is suitable to calculate the conversion coefficients using all the selected
similar pixels rather than using only similar pixels within the same
coarse resolution. Considering the potential geometrical error involved
in the data pre-processing, we decided to compute the conversion coef-
ficient for all the selected similar pixels. As a special case, if there were
no similar pixels or a linear regression model cannot be built with the
defined statistical significance, the central pixel can still provide the
conversion coefficient although this may introduce some errors.

According to Eq. (15), L radiance image at tp can be predicted based
on theweighted scaledM radiance changes and L radiance image either
at t1 or t2. An accurate radiance image can be obtained by using the
weighted combination of the two predicted radiance images based on
t1 and t2, while the temporal weights of the two images may be given
by the temporal changes in coarse resolution radiance images.
Eq. (23) shows how to calculate the temporal weight:

Tk ¼ 1=

Xw
i¼1

Xw
j¼1

M xi; yj; tk;B
� �

−
Xw

i¼1

Xw
j¼1

M xi; yj; tp;B
� ��

X
k¼ti ;t2

1=
Xw

i¼1

Xw
j¼1

M xi; yj; tk;B
� �

−
Xw

i¼1

Xw
j¼1

M xi; yj; tp;B
� ���

0
B@

ð23Þ

where M(x, y, t, B) is the resampled radiance at time t. Therefore, the
final predicted radiance image can be calculated as follows:

L xw=2; yw=2; tp
� �

¼ Tt1
� Lt1 xw

2
; yw

2
; tp

� �
þ Tt2

� Lt2 xw
2
; yw

2
; tp

� �
ð24Þ

where Lt1 is the predicted radiance image using L image at t1 as the base
image, Lt2 is the predicted radiance image using L image at t2 as the base
image. With the final radiance image, LST image can be computed.

5. Results

The accuracy of SADFAT was evaluated through validating the pre-
dicted LSTs against the observed LSTs obtained from the Landsat TIR
data. In this study, five pairs of Landsat and MODIS images were used
for accuracy assessment. We selected correlation coefficient, mean dif-
ference and mean absolute difference to serve as indicators to evaluate
the accuracy. Two pairs of MODIS and Landsat images, acquired on 24th
June and 15th November, 2005, respectively, were used as the first in-
puts to the fusion model (Fig. 3). The white areas in the LST images
were masked-out cloudy areas according to the QA layer of the MODIS
data. From Fig. 3, it is apparent that LST spatial patterns in MODIS and
Landsat images were substantially different in the two dates. Although
theminimum temperatures of MODIS and Landsat images seemed sim-
ilar, the maximum temperatures differed in about 15° in either date
(Table 1). Considering the land cover characteristics of the study area,
the size of the searching window was set to 3 MODIS pixels (i.e., 25
Landsat TM pixels) and the number of land cover types was set to 5.
The second input for the fusion model was the MODIS LST image used



Fig. 3. The observedMODIS (upper row) and Landsat (lower row) LST images on 06/24/2005 and 11/15/2005 as the base images for the fusion model. White points were identified and
masked out according to the QA layer of MODIS LST product.
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to predict the corresponding Landsat LST image at the same date (tp).
Fig. 4 showed the results of prediction in comparison with the inputs:
(A) MODIS LST images (model inputs); (B) predicted Landsat LST im-
ages; and (C) observed Landsat LST images on 10th July, 27th August,
28th September, 14th October, and 30th October, 2005, respectively.
For all the five predictions, the predicted LST images (B) and the ob-
served LST images (C) matched well in terms of the overall spatial pat-
terns of LST. The predicted LST images contained the vastmajority of the
spatial details found in the observed images, including such surface fea-
tures as roads, urban streets, and lakes. Moreover, LST variations with
terrain were also preserved and the unique LST patterns in the moun-
tainous region can also be discerned.

Fig. 5 displays the scatter plots between the predicted and observed
LSTs for each prediction date. The data points fell close to the diagonal
line in each panel, indicating that the predictionswere all in good agree-
ment with the observations. To quantify the prediction accuracy, corre-
lation coefficient, mean difference, and mean absolute difference were
computed. Table 2 shows the result of computation. Overall, the values
ofmeandifference andmean absolute difference between the predicted
and the observed LSTswere quiet small; whereas the correlation coeffi-
cient valueswere all found to be greater than 0.90, except for the one on
14th October, 2005. This is because that the correlation betweenMODIS
and Landsat LST on that date was theweakest (0.63), as seen in Table 1.
Because all the predictions shared the same pairs of Landsat andMODIS
LST images as the model inputs, a comparison of their accuracies was
also feasible. The mean absolute difference ranged from 1.25 K to ap-
proximately 2.0 K. Since the selected images reflected well the pheno-
logical change from June to November, SADFAT proved to be effective
to account for the temporal variations of LST. Compared with previous
studies using the original STARFM method (Liu & Weng, 2012) or with
a revised filter considering surrounding pixels to predict LST (Huang,
Wang, Song, Fu, & Wong, 2012), the improvement of LST prediction in
this study was due largely to the inclusion of the ATC model and
LSMA into the fusion algorithm to calculate the conversion coefficient.
The ATC model can delineate the trend of annual mean temperature
variations while ignoring the specific daily LST changes (Bechtel,
2012; Weng & Fu, 2014), and thus facilitated the prediction of LST tem-
poral changes between the two dates. However, it should be noted in
the scatter plots that there were some pixels showing large differences
between the predicted and observed LSTs. These discrepancies present-
ed a major limitation of SATFAT that associated with the assumption on
the stability of phase shift parameter (θ) in the ATCmodel.While it may
be largely true that the land cover and other surface conditions did not
change over the study period; however, if land covers or other surface

image of Fig.�3


63Q. Weng et al. / Remote Sensing of Environment 145 (2014) 55–67
conditions did change, it could lead to some errors in the prediction.We
identified some of the pixels with large values in mean difference and
mean absolute difference, and found that all those pixels had undergone
land cover changes during the study period. Fig. 6 illustrated that
Fig. 4. (A) The observed MODIS LST images; (B) the predicted Landsat LST images; and (C) the
10/30/2005, respectively. White areas were identified and masked out according to the QA la
vegetated areas on 06/24/2005 changed to bare soil on 11/15/2005.
Since land cover altered over the two imaged dates and the ATC
model was not able to capture the change in LST, a large prediction
error occurred.
observed Landsat LST images on 07/10/2005, 08/27/2005, 09/28/2005, 10/14/2005, and
yer of the MODIS data product.
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Fig. 4 (continued).

64 Q. Weng et al. / Remote Sensing of Environment 145 (2014) 55–67
6. Discussion and conclusions

This research proposed a data fusion model, SADFAT, for predicting
LSTs at high temporal frequency and at the medium spatial resolution
(120 m) using the combined datasets of MODIS and Landsat. The
STARFM algorithm, which was devised for producing Landsat time se-
ries surface-reflectance product, wasmodified and improved for gener-
ating LST data product, with special attention paid to the annual cycle of
LST and the landscape heterogeneity in the urban areas. This paper has
examined in details the theoretical basis and the implementation proce-
dures of SADFAT, and performed an experiment that predicted LSTs
of five dates in 2005 from July to October in the Los Angeles County,
California. The result, asmeasured by themean absolute difference, sug-
gests that the prediction accuracy yielded from 1.25 K to 2 K.

SADFAT presented several improvements over its precedents. The
most significant improvementwas to incorporate anATCmodel to char-
acterize the annual variations of LST, based onwhich the conversion co-
efficients were computed. The use of a conversion coefficient allowed
relating the thermal radiance change of a mixed pixel at the coarse res-
olution to that of a fine resolution pixel. In this way, the predictionwith
a regression model can well be justified. In contrast with the ESTARFM
(Zhu et al., 2010) that used a linear model to predict the change in sur-
face reflectance, SADFAT employed a non-linear model to approximate
annual change of LST. In addition, since SADFAT aims at prediction of
LSTs, both the reflective (Landsat bands 3 and 4) and TIR bands were
utilized for searching for similar pixels. The inclusion of the TIR band
allowed for the obtainment of more accurate similar pixels, because re-
flective and thermal information were complementary. Two-pair im-
ages used for the selection ensured that selected similar pixels
possessed the same spectral and thermal trajectories. In the computa-
tion of the weights for selected similar pixels, the correlation coefficient
of the pixel-wise reflective and thermal vector between MODIS and
Landsat were utilized tomeasure the thermal “similarity”. The higher sim-
ilarity would provide a larger weight in the final calculation for the central
pixel.With the proposedmodel SADFAT, it is possible to predict a radiance
image using one Landsat reference image, either at time t1 or t2. To reduce
the uncertainty, the final predicted images in this study were computed
based on the two predicted images weighted by the temporal change in
radiance at the coarse resolution level.

Another merit of SADFAT is to employ LSMA to address the issue of
thermal landscape heterogeneity. This issue is especially important
when SADFAT is applied to urban landscapes, where mixed pixels
often prevail in medium- or coarse-resolution satellite imagery (Liu &
Weng, 2009; Lu &Weng, 2004). To ensure a consistent comparison be-
tweenMODIS and Landsat data, LST values were first converted to radi-
ances at the Landsat effective thermal wavelength. Then, LSMA linked
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Fig. 5. The scatter plots between the observed and the predicted LSTs on 07/10/2005 (panel A), 08/27/2005 (panel B), 09/28/2005 (panel C), 10/14/2005 (panel D), and 10/30/2005
(panel E).
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Table 2
The computed indices of prediction accuracy (unit: K).

Date Correlation coefficient Mean difference Mean absolute difference

07/10/2005 0.96 0.15 1.68
08/27/2005 0.96 −0.47 1.53
09/28/2005 0.95 0.39 1.42
10/14/2005 0.87 1.08 2.03
10/30/2005 0.93 0.48 1.25
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the radiation relationship between Landsat andMODIS thermal infrared
information. Thus, the temporal change in radiance can be included in
the fusion model.

However, it should be noted that SADFAT also contains a few limita-
tions. An assumption for SADFAT was that the phase shift parameter
would keep constant. Therefore, SADFAT did not have the ability to pre-
dict LST changes that were not reflected in the MODIS and/or Landsat
pixels. The use of an ATC model can well approximate the seasonal
Fig. 6.RGB composite images (R:TMBand4, G: TMBand3, B: TMBand2) on 06/24/2005 (Left) a
soils over the two reference images. In this condition, prediction errors can be up to 3–5 K.
cycles of LST, but it cannot delineate the specific daily weather and sur-
face conditions that may also affect LST temporal variation, leading to
uncertainty in the modeling. Considering the difference in the over-
passing time between Landsat-5 and MODIS sensors was small (less
than 10 min) for the study area, this study did not correct for the differ-
ence in diurnal temperature change between the two sensors. Since
their orbital parameters were equal, the viewing (near-nadir) and
solar geometries of MODIS were close to those of the corresponding
Landsat acquisition (Gao et al., 2006). Nevertheless, the proposed algo-
rithm should be applicable to Landsat-like sensors, such asASTER, to en-
hance their temporal frequency, or to any pair of satellite sensors that
parallel the relationship between MODIS and Landsat. One important
feature of SADFAT is to establish a linkage in radiance change over
time betweenMODIS and Landsat; therefore, as long as radiance chang-
es between paired satellite sensors can be modeled by LSMA and ATC,
SADFAT will be practically useful for thermal sharpening, given satellite
over-passing, orbital parameters, and viewing geometry being consid-
ered. In addition, several parametersmust be carefully set, e.g., the win-
dow size and the number of land cover classes. Different study areas
nd on 11/15/2005 (Right). Pixels in the circle showed that vegetated areas changed to bare
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may require setting up different parameter values, and it is necessary to
perform a sensitivity analysis of these parameters before the modeling.
The mismatching of Landsat and MODIS pixel was neglected in this
study. The variation of MODIS pixel footprint especially at off-nadir
viewing may cause some errors and need to be cautioned. Future re-
search is also needed to fill up the missing values caused by clouds.
The problemwas not so serious in this study since imageswere carefully
selected to avoid cloud contamination. An improved fusion model that
can resolve the cloud contamination issue would be useful for areas
experiencing more cloudy skies than Los Angeles.
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